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Abstract 
In this thesis work, techniques for downsizing Optical modulators to nanoscale for the purpose of 

utilization in on chip communication and sensing applications are explored. Nanoscale optical 

interconnects can solve the electronics speed limiting transmission lines, in addition to decrease the 

electronic chips heat dissipation. A major obstacle in the path of achieving this goal is to build optical 

modulators, which transforms data from the electrical form to the optical form, in a size comparable 

to the size of the electronics components, while also having low insertion loss, high extinction ratio 

and bandwidth. Also, lap-on-chip applications used for fast diagnostics, and which is based on 

photonic sensors and photonic circuitry, is in need for similar modulator specifications, while it 

loosens the spec on the modulator’s size.  

Silicon photonics is the most convenient photonics technology available for optical interconnects 

application, owing to its compatibility with the mature and cheap CMOS manufacturing process. 

Hence, building modulators which is exclusively compatible with this technology is a must, although, 

Plasmonics could be the right technology for downsizing the optical components, owing to its 

capability in squeezing light in subwavelength dimensions. Hence, our major goal is to build plasmonic 

modulators, that can be coupled directly to silicon waveguides. A Plasmonic Mach-Zehnder modulator 

was built, based on the orthogonal junction coupling technique. The footprint of the modulator is 

decreased to 0.6μm × 4.7μm, extinction ratio of 15.8 dB and insertion loss of 3.38 dB at 10 volts was 

achieved in the 3D simulations. The voltage length product for the modulator is 47 V μm . The 

orthogonal junction coupler technique minimized the modulator’s footprint. 

On the other hand, photonic sensors favorably work in the mid-infrared region, owing to the presence 

of a lot of molecules absorption peaks in this region. Hence, III-V semiconductor media is used for this 

type of applications, owing to the availability of laser sources built of III-V media, and to the lower 

losses that these materials have in mid-infrared region. Hybrid plasmonic waveguide, formed of 

doped InAs, AlAs and GaAs is studied extensively. Based on this waveguide an electro-absorption 

modulator is built. The device showed an extinction ratio of 15 dB at 40μm  length, and 2 dB of 

insertion loss. The small device footprint predicts a much lower energy consumption. 
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 : INTRODUCTION 

1.1 OPTICAL MODULATORS 

From the earliest work on optical circuits going back to the 1970s, images of an optical super-chip 

featuring a range of interconnected optical components for light generation, modulation, processing, 

detection and amplification have been envisioned Figure 1-1. Applications ranging from 

communication, sensing and computation are all waiting for a boost from such chips. One of the main 

components of these photonic chips is the optical modulators, which is the focus of this thesis. 

 

Figure 1-1 silicon based photonic circuit [1]. 

Optical modulators are devices which allow the manipulation of light propagating through by 

electrical signals, in other words, it transforms electrical signals to optical signals. Later on, light may 

be propagated through an optical waveguide, or carried in free space. Modulators are classified as 

amplitude modulators, phase modulators or polarization modulators, based on the feature of light 

that is being manipulated. Amplitude modulation is mainly discussed in this thesis. 

There are two main types for amplitude modulation, the direct modulation and the exterior 

modulation. Direct modulation is done by modulating the current biasing the light source (e.g. a laser 

diode) directly. That is why light modulators are considered external light modulators, like what is 

usually done in fiber optic communications. laser diodes are favorably required to have narrow 

linewidth; consequently, direct modulation is always not considered because of the high bandwidth 
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required for switching the current of the laser. As a result, optical modulators are always used after a 

light source to manipulate light. 

1.2 MODULATORS CLASSIFICATION 

Modulators are classified into two classes, depending on the characteristics of the material used to 

modulate the light beam: absorptive modulators and refractive modulators. The absorption 

coefficient (the imaginary part of the refractive index) of the material is modified in absorptive 

modulators, and the refractive index of the material is modified in refractive modulators. 

The material's absorption coefficient in the modulator may be influenced by the Franz-Keldysh effect, 

the Quantum-confined Stark effect, excitonic absorption, Fermi level shifts, or adjustments in free 

carrier concentration. Generally, the modulator is called an electro-absorptive modulator if many such 

effects occur together.  

The refractive index of a material is most commonly influenced by electro-optic effect. Other types of 

refractive modulators could have an acousto-optic or magneto-optic effect, or use the variations in 

the polarization of liquid crystals. The corresponding effect is named for the refractive modulators: 

i.e. electro-optic modulators, acousto-optic modulators etc. The role of either of the above types of 

refractive modulator is to manipulate the phase of light. A directional coupler or an interferometer 

may be used to transform the phase shift into amplitude modulation.  

1.3 PLASMON POLARITONS    

Surface plasmon polaritons (SPPs) (shown in Figure 1-2) are electromagnetic fields that is coupled to 

charge oscillations at metal dielectric interfaces, these fields can confine light in nanoscale regions 

that are considerably smaller than the wavelengths of light in the material [3]. The electromagnetic 

field perpendicular to the metal-dielectric interface decays steadily at a distance from the metal 

surface while preserving the long-range distribution of electromagnetic radiation across the surface. 

This interesting feature of SPPs enables subwavelength scale manufacturing of photonic components. 
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Figure 1-2, Surface plasmon polaritons 

Surface plasmons (SPs) are classified into a localized type called localized surface plasmons (LSPs) and 

a propagating type called the propagating surface plasmon polaritons (PSPPs). For this work, only 

PSPPs would be listed for the purposes of optical signal communication and photonic circuits, so they 

are hereafter referred to as SPPs. 

Thanks to the peculiar properties of SPPs, different forms of metallic nanostructures such as thin 

metal films [8], grooves [10], metal nanoparticle chains [4], hard metal wedges [14], metal slits [9] 

and chemically synthesized metal nanowires (NWs) [11], metal/insulator/metal (MIM) slabs, hybrid 

Bragg waveguide, metal strips, wire/spacer/film MIM structures, and hybrid plasmonic structures 

[15], were all introduced in nanophotonic applications.  

1.4 ON CHIP MODULATORS 

Two optical modulators are designed and discussed in this thesis for two different applications, the 

Lap On-Chip application and the optical interconnects application.  

Silicon electronic circuits are reaching the fundamental physical limits in terms of both speed and data 

transmission rate [1], also heat dissipation is becoming a serious issue. The International Technology 

Roadmap for Semiconductors (ITRS) has highlighted interconnect scaling as a problem for the 

semiconductor industry. Some of the possible approaches to increase the date rate and lower heat 

dissipation in chips is the use of light, rather than electrons in date transmission [2]. Nonetheless, the 

viability of producing nanoscale photonics is restricted, because the diffraction limit of light is 

dominant when the size of a photonic system approaches the wavelength of light in the material, this 

is considered as the main challenge toward merging photonics and electronics. 

https://en.wikipedia.org/wiki/International_Technology_Roadmap_for_Semiconductors
https://en.wikipedia.org/wiki/International_Technology_Roadmap_for_Semiconductors
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The utilization of optical systems in electronic chips could solve the date rate issues, and loosens the 

heat dissipation problem. Such optical systems are called optical interconnects, which typically 

consists of a laser source, a modulator to transfer electrical signals to optical signals, optical 

waveguides to transmit date and detectors to retransform data to the electrical form [optical 

interconnects ref]. These systems are targeted to be built on the electronic chips for the 

communication between different electronic circuits, hereafter comes the term On-Chip optical 

systems and On-Chip optical modulators.  

The optical interconnects and the lab On-Chip applications require different implementation 

technologies. Optical interconnects requires working at 1.55 μm wavelength, and is required to be 

built with a technology that is compatible with the CMOS technology, hence silicon photonics is always 

the choice. On the other hand, lap On-Chip application requires working in the midinfrared region, as 

the absorption peaks of many of the molecules of interest for diagnostics is found in this wavelength 

range. The favorable technology for midinfrared region is the III-V semiconductor technology, as laser 

sources are efficiently built in this using III-V media. 

Although photonics can allow for a huge performance gains for such applications, reducing the size of 

bulky photonic components is the major issue towards the implementation of photonic integrated 

circuits on electronic chips. Plasmon polaritons which tightly confine light at the metal-dielectric 

interface, can be a potential solution to this problem. Plasmonic On-Chip optical modulators are the 

focus of this thesis. 

1.5 OBJECTIVES AND SCOPE OF THESIS  

In this thesis, the plasmonic features are exploited to build optical modulators for two on-chip 

applications, first is interconnect applications, second is sensor photonic circuits. The first work is 

based on silicon on insulator platform to be compatible with the CMOS industry. The second is built 

for midinfrared wavelength region, as many sensor applications are built in this region, and it is based 

on III-V semiconductor media, to utilize the fact that the most efficient lasers in this domain is built 

on this technology, hence, opening the door for complete systems built on the same technology. The 

second piece of work was built by us starting from a new material configuration of the hybrid 
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plasmonic waveguide structure, so, a chapter is written to discuss the properties of this waveguide, 

before proceeding to the modulator.  

In this thesis, the physics and design of plasmonic on chip optical modulators will be discussed. An 

electro-refractive and electro-absorption examples are designed, and computationally Modelled.  

The rest of the thesis is organized as follows: 

Chapter 2: Background and literature review 

Chapter 3: Electro-Optic Plasmonic Modulator with Direct Coupling to Silicon Waveguides 

Chapter 4: Negative & Positive Dispersion Engineering in Med Infrared Region for Hybrid Plasmonic 

Waveguide 

Chapter 5: Mid-infrared Iii-V Electro-Absorption Hybrid Plasmonic Modulator 

Chapter 6: conclusion  
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 : BACKGROUND AND LITERATURE REVIEW 

Optical modulators have a long history starting from being used in fiber communications. Early 

experiments used lithium niobate (LiNbO3) [1][2] exclusively because it possesses a strong electro-

optic coefficient. III-V semiconductors such as devices based on gallium arsenide (GaAs) and indium 

phosphide (InP) was the usual platform. Lasers were mainly fabricated based on III-V media, which 

makes them interesting for the optical modulation. 

Silicon (Si) dominance in the microelectronics industry, gradually led to Si photonic circuits being 

investigated, due to the possible integration with electronics. This work began late, in the mid-1980s 

for two reasons. First, Si is fundamentally limited as an optical element, as it is an indirect band gap, 

so non-traditional techniques for light generation must be examined. This research is making fast 

progress, silicon light-emitting diodes (LEDs) are now a fact [5], many researchers expect the Si laser's 

arrival. Secondly, Si's crystal structure does not show an electro-optic Pockels effect, which is the 

conventional way of implementing optical modulator. 

Optical modulation in photonic circuits is applied through devices that trigger variations in optical 

intensity via absorption, or trigger shifts in the material's refractive index and hence the propagating 

wave phase, which can be transformed to a shift in intensity by an interferometer or resonant device.  

The ideal way of introducing modulation is by adding an induced electric field change in the refractive 

index, since this indicates little to no current (and thus low power) and faster response. A change in 

the real part of refractive index, is named electrorefraction, and in the refractive index 's imaginary 

part, is named electroabsorption. Pockels effect, Kerr effect, and Franz-Keldysh effect are the main 

electric field effects that are important in semiconductor materials. 

2.1 SILICON OPTICAL MODULATORS 

Silicon modulators are a corner block in the Silicon photonics industry since the beginning since initial 

research on simple waveguide technology [6][7][8][9]. A collection of interesting and/or important of 

the modulators tested since the mid-1980s will be discussed. Modulation depth, bandwidth, energy 
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consumption and footprint are the essential parameters for an optical modulator and, where 

applicable, these parameters are included in the discussion. 

The early prototypes were based on Si guiding layers built from doped Si substrates, the latter with a 

decreased refractive index due to the influence of plasma dispersion. Waveguiding systems based on 

SOI platform became more common. The first plasma dispersion modulator in Si was suggested by 

[10].  The modulator is shown in Figure 2-1, is based on a Si rib waveguide, 1 mm long. The insertion 

loss of the modulator is less than 1 dB at 1.3 μm wavelength. The structure is very similar to the 

nowadays silicon photonic modulators except for the buried n+ under the silicon dioxide layer that 

allows for vertical current streaming. 

 

Figure 2-1 Proposed SOI p+-n-n+ channel-waveguide electro-optical phase modulator18. [10] 

In 1993, utilizing a single mode SiGe rib waveguide [11] an MZI were developed with a PIN device. The 

modulation depth at a wavelength of 1.3 μm was found to be -10 dB, with a current of 150 mA, the 

lowest value recorded at the time. But their device's response time wasn't recorded. Silicon photonic 

based modulators were mostly used in optical modulators in the mid of nineties.  

In 1997, a Si modulator is introduced based on three-terminals on a low-loss single-mode SOI 

waveguide but with the buried oxide layer eliminated in the modulator 's active area Figure 2-2 [12]. 
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Figure 2-2 Three-terminal modulator proposed by  [12]. 

The device was technically evaluated and the three-terminal electronic configuration is, according to 

the scientists, considerably more effective than two-terminal PIN diode-based modulators, a close 

inference to the previously drawn by [13][14][15]. A 20 percent amplitude modulation at an injection 

power of around 126 mW and a switching time of 5.6 ns was recorded. 

In fact, it demonstrated a rather high figure of merit when the system was utilized as a phase 

modulator. With a driving power of 43 mW and a switching period of less than 3.5 ns (> 100 MHz) the 

expected output was around 215 °/Vmm. This was a very optimistic prediction at the time for a 

modulator centered on a broad rib waveguide. For the rib diameter, Si layer thickness and etch depth, 

the proposed modulator has dimensions of 6 μm, 6 μm, and 1.5 μm, respectively. 

In 2000, a basic two-terminal PIN modulator based on a 5.5 μm SOI rib waveguide was revived using 

computer simulation. It is expected that substantial optimization is feasible for a two-terminal system. 

A raise in p+ and n+ doping concentrations from 1E19cm-3 to 1E20cm-3 will result in a decrease in 

drive current from 63 mA to 8 mA. 

Scientists at Intel [16] have experimentally demonstrated a Si-based optical modulator with a 

bandwidth that for the first time approaches 1 GHz. It is a major achievement in Si photonics and has 

received considerable public coverage [17]. This system strongly resembling a CMOS transistor. 
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2.2 PLASMONIC MODULATORS  

The scaling of present modulator designs discussed in previous section to micrometer and nanometer 

scale is not possible due to poor electro-optic effects. Plasmonics can offer new modulator designs 

that are substantially more compact and thus effective in power. 

Active plasmonics was first used in proposing SPP modulation by a light-induced phase change in a 

nanoscale layer of a metal / Gallium SPP waveguide [21]. SPP fields are tightly confined to metal 

surfaces, and thus extremely susceptible to shifts in refractive index [22]. The basic active plasmonic 

concept is a temporary change in the refractive index of either the metal or dielectric part of an SPP 

waveguide, caused by external control excitation modulate the intensity and/or phase of a 

propagating SPP [24]. 

A modulator based on SPP was recorded in CdSe quantum dots in 2007 [18]. Quantum dots covering 

the surface of a silver waveguide in their ground state have no effect on the transmission of an SPP 

signal at a wavelength of 1.426μm. However, when stimulated at 514.5 nm by a co-propagating pump 

SPP they are absorbent at the wavelength of the probe and attenuate the SPP electrode. A 12 percent 

increase (0.55 dB) was reported in a device's optical signal efficiency with a 3.6 μm SPP waveguide 

duration with an optical pump strength of 600Wcm; It was achieved at modulation frequencies of up 

to 25 MHz (the height of the detector apparatus), suggesting a fixed cycle period of 40 ns. 

The next year, a non-volatile plasmonic transition utilizing photochromic molecules as the active part 

was shown [19] the molecules were located inside the polymer part of an aluminum / PMMA wave 

guide for an SPP signal at 633 nm; they were transferred between stable absorbing and transparent 

states utilizing 6 mW / cm free-space optical pump beams. 

An electro-plasmonic modulator was reported [20], the application of a bias (up to 45 V) across a 

silver/barium-titanite SPP waveguide induces domain switching in the ferroelectric BaTiO thin film 

and modifies its refractive index. As part of an interferometric device structure with a length of 

between 0.5and 5.3 μm such switching modulates the optical output at 688 nm by up to 15% (0.7 dB).  
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The modulation of a femto-second SPP signal via the direct optical excitation of metal was 

demonstrated [25]. Wavelength probe experiments at 780 nm (and a subsequent study covering the 

range from 765 to 810 nm [26]) reveal a nonlinear interaction between probe SPP and pump light that 

takes place in the skin layer of the metal; It produces up to 35% ( 1.3 dB) modulation of the probe for 

a pump fluence of 13 mJ.cm over an SPP propagation distance of 5μm. 

A metal-oxide-semiconductor (MOS) field-effect plasmonic modulator operating at 1.55 μm was 

reported [27]. The device employs a four-layer metal-MOS-metal waveguide structure that supports 

both photonic and plasmonic modes, and has a transmission coefficient determined by interference 

between the two. Switching times are found to be shorter than the 10 ns limit of the experimental 

apparatus. A peak modulation depth of 4.56 dB is observed at 0.75 V in a device 2.6μm long. the 

fundamental limit on switching speed is the charge accumulation. The plasmonic modulator could 

operate at gigahertz frequencies. 

 

Figure 2-3 The figure shows the switching energy vs operating frequency of different types of optical modulators.  

2.3 MIDINFRARED MODULATORS 

There is no much research work done on modulators for the midinfrared region. Few groups tried to 

extend the Si or Ge based modulators to the midinfrared region [28][29]. Expanding the 

telecommunication wavelength range to higher than 2 μm is one motivation for such research [30]. 

Also, longer wavelengths can be utilized in free-space communications modulator, signal processing 

and switching applications [31]. In addition to the need for such modulators for sensor photonic 
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circuits [32] at the whole midinfrared region from 2 to 20 μm. SOI carrier injection modulators with 

speed up to 3 Gb/s at 2165 nm wavelength [34], and GOI modulators at 1950 nm wavelength [33] 

have been demonstrated. 

In the near-IR, high-speed modulators typically employ free-carrier depletion in a PN junction [35], 

and use either a Mach-Zehnder interferometer (MZI) or ring resonator to convert the phase change 

into an intensity change. An MZI-based PN junction modulator in the SOI platform has been 

demonstrated at 1950 nm. The device operates at carrier depletion mode, a modulation efficiency of 

2.02 V.cm at 1550 nm and 2.68 V.cm were measured. An open eye diagram at 20 Gb/s with a 5.8 dB 

extinction ratio were measured [31].  

 

The free carrier effect for Si and Ge were Semi-empirically presented in [36] and [37] respectively. 

These equations predict that the free carrier effect is approximately proportional to the square of the 

wavelength in both materials, with Ge generally stronger than Si. Modulators in SOI and GOS 

technologies were built and characterized at 3.8 μm wavelength [31]. The modulators were based on 

PIN diodes integrated with a waveguide, where carrier injected from the diode into the waveguide 

changes the imaginary part of the waveguide core, which means changes its absorption. The SOI 

modulator was 2 mm long, and the GOS modulator was 1 mm long. They both achieve a modulation 

depth higher than 30 dB, the SOI modulator achieves an insertion loss of 2.8 dB [31]. 

As it is clear from this short summary of Si and Ge based midinfrared modulators, there are few work 

done in this domain, and structures are still having a very big footprint, and high insertion, losses 

which is not suitable for working in Lap-On-Chip applications.  
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 : ELECTRO-OPTIC PLASMONIC MODULATOR WITH DIRECT 

COUPLING TO SILICON WAVEGUIDES 

ABSTRACT: A novel plasmonic Mach-Zehnder Interferometer is proposed with a nonlinear polymer. 

Orthogonal junction coupling between silicon and plasmonic waveguides is exploited to omit the need for 

tapers, and in turn, reduce the footprint. An extinction ratio of about 16 dB is produced at a voltage-length 

product of 47 Vμm. An insertion loss of 3.38 dB is achieved including the coupling to and from the silicon 

access waveguide. The orthogonal coupling provides wideband operation, high efficiency, low loss and 

compact size for our design. 

Index Terms: Integrated Optics Devices, Modulators, Electro-Optical Devices, Surface Plasmons. 

INTRODUCTION 

Electrical interconnects limit the processors computational power, due to the RC delay in communication 

within the cores of the processor and between different cores. Optical Interconnects that have the 

privilege of working at much higher speeds offers a good solution for such problem [1,2]. A key component 

in any on chip optical system is the electro-optic modulator. High compactness, low Power consumption, 

large extinction ratio, and high speed are the most desirable properties of the electro-optic modulator. 

Silicon photonics technology has attracted considerable attention in the last decade due to its ability to 

fabricate low loss waveguide based components. Modulation, in general, occurs through utilizing 

nonlinear effect, or through utilizing index change induced due to free carrier injection [3-6]. However, 

silicon photonic devices miniaturizing in the nano-scale is not easy due to the diffraction limit.  

Plasmonics, on the other hand, has the unique ability of confining light in metal-dielectric interfaces in the 

nano scale. Hence, it can increase the light-mater interaction and allow for shorter devices compared to 

silicon photonics [7]. On the other hand, plasmonics suffer from high propagation losses and should be 

compact in size to alleviate this drawback. A hybrid technology that exploits the low path losses advantage 

of silicon photonics and the tight light confinement of plasmonic devices can be an attractive 

platform specially for on chip modulators [6,8], such a hybrid platform is known as the hybrid plasmonic 
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platform. Plasmonic crystal nano-cavities [9*], hybrid photonic-plasmonic resonator [10*], optical 

trapping device [11*] and a biosensing application [12*] have been demonstrated as applications from 

the hybrid photonic plasmonic systems.   

Plasmonic modulators, can be built using various configurations including resonance topology, electro-

absorption, and interference mechanism. Plasmonic resonators have a relatively small footprint, and low 

power consumption [13]. However, they suffer from high sensitivity to temperature and process 

variations, requiring them stabilization circuitry, and in turns more power and area consumption [14]. On 

the other hand, Mach-Zehnder doesn't suffer from temperature and process variations, as these 

variations usually cancel out in the symmetric arms of the Mach-Zehnder [15]. Electro-absorption 

modulator, on the other hand, dissipates more heat than the other modulators [16,17]. Graphene and 

Indium Tin oxide (ITO) are widely used for such applications [18-22]. Lastly, interferometer modulators 

including Mach-Zehnder modulators (MZM) for example, are low power consumers, but they lack the 

small footprint advantage of their competitors and hence higher insertion losses are expected [22-24]. 

In this thesis, we utilize the advantages of both the plasmonic organic MZM and the orthogonal junction 

coupler presented in [25,26]. These two platforms together are able to make a good compromise between 

modulator length, footprint, extinction ratio, insertion loss, and energy consumption relative to the 

previous works, as will be shown latter. The orthogonal junction enables direct coupling between silicon 

interconnects used in routing data, and plasmonic waveguides of the MZM, without the need for a 

tapering or any special junction, this advantage is the main source of enhancement in our design.   

In the next section, we present the working principle of the modulator. The third section presents the 

design methodology and optimization process of the modulator. The fourth section presents the results 

accompanied by a discussion of the work significance. 

3.1 OPERATION PRINCIPLE 

The MZM device consists of input silicon waveguide, coupled to a plasmonic slot orthogonal junction, that 

is connected to the plasmonic slot arms of the MZM. Lastly the MZM arms are coupled to the output 

silicon waveguide again through an orthogonal coupler, as shown in Figure 3-1. The waveguides are 
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optimized such that lateral momentum component of the silicon waveguide mode matches the 

momentum of the plasmonic slot waveguide (PSW) to ensure maximum coupling between the two 

waveguides.  This approach has theoretically and experimentally been verified to provide efficient, wide 

band, non-resonant coupling from/to silicon waveguides to/from PSWs [25,26]. 

 

Figure 3-1 The MZM, with input and output silicon waveguides, the modulator arms are plasmonic slot waveguides filled with 
nonlinear polymer, with two silver triangles at the input and output. The x-y plane contains the top plane of the modulator. 

The plasmonic waveguide core is filled with a nonlinear electro-optic polymer (EOP) that exhibits the 

Pockels effect. If no voltage is applied, the light propagates to the combiner, where the fields interfere 

constructively, Figure 3-2(a). Once the voltage is applied, the refractive indices of the upper and lower 

paths differ, so the light propagate in each arm at different speed. The length of the plasmonic waveguide 

is designed to induce sufficient phase difference between the two paths to create a destructive 

interference at the combiner as shown in Figure 3-2(b). 

 

Figure 3-2 The z-component of the magnetic field (Hz) at wavelength equals to 1.55µm for the On state of the modulator (a), and 
the Off state (b). 

Positive voltage is applied on the middle silver island, and a ground is applied on the exterior silver islands 

as shown in Figure 3-1. Accordingly, the electric field direction is outward from the middle metal island. 

The PSWs along the y-axis located at the splitter and the combiner, have an electric field direction in the 
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negative and positive x-direction respectively. This biasing method is called the push-pull configuration. 

Only the plasmonic waveguide parts along the x-axis in each arm will have a different field direction, in 

turns, they will be the only contributors in creating the phase difference accumulation. 

It is worth noting that the Silicon-PSW orthogonal junction designed in [25,26] were optimized, where the 

slot was air filled. Now the slot is filled with the EOP which increases the momentum of the plasmonic 

mode inside the slot. This required a modification of the original design to allow for better matching, 

efficient splitting, and minimize the reflection to the main waveguide. Accordingly, the design has been 

optimized with two major modifications. The first one, is the addition of silver triangles to the middle 

metal island at the splitter and combiner. The silver triangles help in guiding the power in the splitter and 

out of the combiner. Also, they decrease the reflections from the orthogonal junction combiner which 

cause an undesired cavity effect for the proper work of the MZM. The base side of the isosceles silver 

triangle is equal to the width of the silicon waveguide. The second modification is using a 100 nm flat 

metal surface instead of the tapered one at the combiner, as shown in Figure 3-1, this is found more 

capable of distributing the power at the output of the silicon waveguide, such that the fields interfere 

destructively in a more efficient way, which enhances the extinction ratio. 

3.2 OUR NOVEL DESIGNS 

A full electromagnetic analysis based on the finite-difference time-domain method is utilized  to verify the 

design concept and optimize the design using [27]. The smallest mesh size is 10 nm. 2D simulations were 

used as a preliminary step for 3D simulations. Throughout 2D simulations, the Si on SiO2 waveguide were 

modeled using the effective index method. In 3D simulations, the refractive index of Si and SiO2 were 

chosen to be 3.45 and 1.45 respectively. The Johnson-Christy material model is used for silver [28], which 

is an experimentally verified model. The effect of the angle of the wedge with the silicon waveguide at 

the input side is minor as long as it is between 45 degrees and 80 degrees. The polymer used is Dispersive 

Red 1-poly-methyl-methacrylate (DRI-MMA) side chain copolymer [30]. The electro-optic side chain 

copolymers are known to be stable and can be used in long term photonic devices [30]. The thickness of 

the polymer layer is the same as surrounding silver. 
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Figure 3-3 The transmission (output power/input power) of the modulator versus the width of the silicon waveguide (Si WG) at a 
height equal to 340 nm, and wavelength equal to 1.55 µm at zero voltage (On state). 

Figure 3-3 shows the transmission of the modulator Vs Si waveguide width, at a slot gab size of 100 nm, 

with arbitrary arm lengths, the 400 nm is chosen for maximum coupling. The height of the silicon 

waveguide was chosen to be 340 nm to match a typical sold silicon on insulator (SOI) wafer. The refractive 

index change of the polymer by Pockels effect follows Eq.(1) [29]. 
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Where n0 is the refractive index of the polymer at no voltage, it is equal to 1.6, r33 is the electro-optic 

coefficient of first order nonlinearity of the polymer, it is equal to 300 pm/V  [30], and E is the electric field 

across the polymer. The electric field is V/g,  where V is the voltage difference across any of the two arms 

of the Mach-Zehnder, g is the slot width of the plasmonic waveguide. The sign in Eq.(1) can be positive or 

negative according to the direction of the applied electric field. We chose g to be 0.1μm to be convenient 

for future fabrication. The device is feasible to be fabricated using electron beam lithography similar to 

the design in [24]. 

By applying 10V on the middle silver area, the refractive indices of the polymer of each arm are calculated 

using Eq.(1) , and the effective indices of the plasmonic waveguides are calculated using modal 

analysis [27]. Both refractive and effective indices are shown in Table 3-1. The large variation in the 

effective index is an evidence on the high light-matter interaction and confinement. 
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Table 3-1 refractive index of polymer and effective index of the plasmonic WG arms under 10V. 

 Arm(1)  Arm(2) Δn 

Refractive index  1.6614 1.5386 0.1228 

Effective index 2.2464 2.0667 0.1797 

 

 The phase delay is related to the propagation constant through Δβ.L = ∅, where L is the Mach-

Zehnder arm length, ∅ is the phase difference on the ends of each arm, and β is the propagation constant 

of the plasmonic mode. The length of the modulator is as given by Eq. (2).  

     

 
2 eff
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The length is calculated to be 4.33μm. Through 3D simulations, on applying 10V, the optimum value for 

the length of the arms, at which the modulator has minimum transmission, was found to be 4.7 μm. 

Consequently the length of the plasmonic waveguide along the x direction is 4.7 μm and the sides along 

the y direction were chosen to be 0.6 μm, which is lower than previous published work as will be shown 

latter. The main performance enhancer is the addition of the orthogonal coupling junctions which is 

shorter than the tapper junctions used before [24].  

3.3 MODULATOR CHARACTERISTICS 

To be able to quantify the performance of an optical modulator, few important measures should be 

calculated. The main parameters are the extinction ratio, insertion loss, dimensions, bandwidth, energy 

per bit, and the reflections. Each of these parameters are defined, compared and discussed with the state 

of the art values in the following subsections.  

(2) 
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The main output of our analysis - from which we will discuss most of the modulator metrics - is the 

transmission (output power/input power) of the modulator, shown in Figure 3-4. The transmission curve 

was calculated from 3D simulations for two cases. The first at biasing voltage equal to 10V, and the second 

for biasing voltage equal to 6V. The main parameters of the modulator is extracted in Table 3-2 for the 

1.55 µm wavelength. The parameters for state of the art designs in literature are added to the same table. 

The designs presented in the table are: [23,25] which are plasmonic MZM with tapered couplers of 

different configurations, and [20] which is an electro-absorption modulator.   

 

Figure 3-4 The transmission (output power/input power) in the On and Off states. The blue solid is for the 10V modulator whose 
length is 4.7 µm. The red dashed is for the 6V modulator whose length is 8.1 µm. 

Extinction ratio is a key parameter in modulators, it quantifies the strength of modulation by measuring 

the difference between the output power in the on and off states. 3D simulations were done to get 

accurate values for extinction ratio at 10V and 6V biasing. An extinction ratio of 15.8 dB is calculated at 

10V, and approximately 11 dB is calculated at 6V, both at 1.55µm. 

To show the superiority of this performance, we compared our results to state of the art MZM. Our device 

has higher extinction ratio than the 6dB presented in [24] and the 7.3 dB presented in [23], as shown 

below in Table 3-2. Both designs presented in [23, 24] use different configurations of tapered couplers; 

that shows the effectiveness of using orthogonal coupling. Also we compared our work to a state of art 

electro-absorption modulator presented [20], and our device also shows higher extinction ratio as shown 

in Table 3-2 below. 
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Insertion loss is a critical measure for the optical losses in the device. Higher losses in any of the devices 

in an interconnect system, means more energy consumption in the whole processor; energy consumption 

is a critical issue in processors. The optical losses include the coupling and waveguide and material losses. 

Our device shows 3.38 dB and 4.6 dB at 10V and 6V biases, respectively. This performance is a step ahead 

the previously published work in plasmonic MZM as shown in Table 3-2 below.  

 

Table 3-2 Comparison between plasmonic modulators 

Comparison 

Parameters 

Our Work at 

10V 

Our Work at 6V C.Haffner 

(2015)[24] 

Shiyang Zhu 

(2010) [16] 

Volker J. 

Sorger(2012)[20] 

Extinction Ratio 15.8 dB 11 dB 6 dB 7.3 dB 5 dB 

Insertion Loss 3.38 dB 4.6 dB 5 dB 8 dB 1 dB 

Energy Consumption 40.82 fJ bit-1 25.5 fJ bit-1 25 fJ bit-1 - 56 fJ bit-1 

Voltage 10 V 6 V 6 V 5.6 V 4 V 

Length 4.7 µm 8.1 µm 10 µm 3.7 µm 5 µm 

A main target of our work is to enhance the size of the MZM. the main parameter that quantify the size 

of a MZM is the voltage length product. Our device shows 47 Vµm voltage length product, which is 21.5% 

lower than the state of the art plasmonic MZM presented in [24].   

Optical bandwidth can be quantified from the transmission response in Figure 3-4, the 6V biased 

modulator, shows a wide band operation especially for the region starting from 1.3µm till 1.55µm. The 

10V biased modulator shows a narrow band response, due to the ripples in the response. These ripples in 

the transmission response is due to a resonating wave that bounces between the two orthogonal 
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junctions. This resonance effect is more evident in the 10V modulator because it has a shorter length, in 

turns lower losses and higher quality factor. Electrical bandwidth determines the maximum bit rate of the 

modulator. Since our device is smaller than the one reported in [24] and the same electro-optic material 

is used, then it is estimated to have at least the same bit rate that exceeded 54 Gbit/s.  

The energy per bit consumption for the modulators in optical interconnects should be as low as 50 fJ bit-

1 [31]. We estimated the energy consumption using a capacitance model, the capacitance is calculated 

analytically. Our modulator is below this limit at both the 10V and 6V biased modulators. In comparison 

to the modulators presented in table(3), our 6V biased modulator shows similar energy per bit value to 

[24], and both our devices show lower values than the electro-absorption modulator presented in [20]. 

Resonators show lower energy consumption, but as mentioned before, resonators are much less stable 

against process and temperature variations [14, 15].   

Lastly, the coupling losses in both modulator arms ranges between 1.87 dB to 0.97 dB in the range of 

wavelength between 1.4 μm to 1.6 μm, in the on state of the 10V biased modulator. In the off state, the 

coupling decreases due to the effective index contrast between the silicon and plasmonic waveguides.  

 

Figure 3-5 The two curves show the normalized coupling in any of the two arm, in the on (solid green) and off (dashed red) states. 
Both are for the 10V modulator (the legend is for both graphs). 

3.4 CONCLUSION 

An organic plasmonic Mach-Zehnder modulator was presented. We took advantage of the orthogonal 

junction coupling technique. The footprint of the modulator is decreased to 0.6μm × 4.7μm by the 

omission of the tapering sections used before [24] to couple in and out of plasmonic waveguides. 
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Extinction ratio of 15.8 dB and insertion loss of 3.38 dB at 10 volts was achieved in the 3D simulations. 

The voltage length product for the modulator is 47 Vμm. The orthogonal junction coupler enhances the 

extinction ratio and insertion loss of the organic Mach-Zehnder plasmonic modulator, while keeping the 

voltage length product approximately the same. 
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 : NEGATIVE & POSITIVE DISPERSION ENGINEERING IN MID- 

INFRARED REGION FOR HYBRID PLASMONIC WAVEGUIDE 

ABSTRACT 

This study analyzes the dispersion properties of hybrid plasmonic waveguide in the mid infrared region, 

with both its negative and positive parts, using GaAs, AlAs and doped InAs as the materials for the three 

layers of the waveguide. The dispersion curve is engineered by changing the waveguide dimensions, and 

the doping level of the InAs. doping levels ranging from 5E19 cm-3 to 2.5E20 cm-3 are studied. Dimensions 

ranging from 150 nm to 4 μm for the width of the waveguide, 150 nm to 3 μm for the height of the 

cladding, and 10 nm to 100 nm for the height of the core are studied. It is observed that increasing the 

doping level, increases the slope of the negative dispersion part. Also the doping level has the ability to 

shift the dispersion curve with respect to the wavelength axis. All the dimensions have the ability to shift 

the dispersion curve with respect to the effective index axis. 

Keywords: negative dispersion, mid infrared, hybrid plasmonic waveguide, semiconductors, 

plasmonics, dispersion curve engineering. 

INTRODUCTION 

Plasmonics showed an advantage in manipulating light over previous technologies in last years, it showed 

an ability to confine light in sub-wavelength dimensions. This helped in Nano-scale integration of photonic 

devices to build better communication systems inter and intra electronic chips. Also in sensing 

applications, plasmonics helped in reaching higher sensitivity values. The interaction between the 

material to be sensed and the confined light is higher than non-plasmonic sensing mechanisms involving 

light. 

Although plasmonics has this great advantage, many work is needed to engage plasmonics in different 

applications at cost effective and reliable way. Mid infrared region (MIR) is the range of choice for this 

work. Mid infrared region has a lot of potential in many applications. First, it contains the absorption 
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resonances of many molecules, this enables us to build chemical sensors in this region, which can aid in 

measuring environmental conditions, and in the diagnosis of certain diseases. Second, hot body radiations 

absorption bands are in the MIR, so this region can contribute to the security applications. Lastly, it can 

help in guiding light in quantum cascaded based laser systems (1-4). 

To build any of these applications, first of all the waveguides in this range of wavelengths should be 

studied, as it forms the building blocks for any of these applications. In this study, the hybrid plasmonic 

waveguide is studied. The fabrication of this waveguide is straightforward with the normal masking, 

photolithography, etching and deposition steps. A negative and positive dispersion are observed in the 

waveguide, and the effect of the waveguide dimensions and doping levels on the dispersion curve are 

presented in this study. Since quantum cascade laser is the appropriate type of lasers used in mid infrared 

region, and these lasers are made by using InGaAs/AlInAs alloys on InP and GaAs/AlGaAs on GaAs in this 

wavelength range (2,5). InAs, GaAs and AlAs were chosen to be our building materials for the waveguide, 

so that complete systems can be easily built using the same fabrication technology.  

The chapter is organized as follows, the second section presents the structure of the waveguide, and the 

material models used. The third section presents the dispersion analysis results, and the effect of the 

dimensions and doping level on the shape of the dispersion curve. the last section is the conclusion.   

 

4.1 OVERVIEW AND MATERIAL MODELING 

The hybrid structure is shown in Figure 4-1, it is a three layer waveguide built on GaAs substrate, the upper 

layer is N-doped InAs, the middle layer is AlAs, and the bottom layer is GaAs, and the waveguide is 

surrounded by air. Constant real epsilons were used for the GaAs and AlAs, 3.283 for GaAs and 2.84 for 

AlAs (6).  

                                                                                                                      

For the n doped InAs, the Drude model is used: 
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𝜀(𝜔) = 𝜀𝑠 (1 −
𝜔𝑝

2

𝜔2 + Γ2) + 𝑖𝜀𝑠 (
Γ ∙ 𝜔𝑝

2

𝜔(𝜔2 + Γ2)
) 

 

This model shows the dependence of the relative 

permittivity of any material containing a lot of free 

carriers, on the frequency of the flowing EM fields in the 

material, the relative permittivity also depends on the 

permittivity of the pure InAs 𝜀𝑠,  the plasma frequency 

𝜔𝑝, and the scattering rate of the carriers . The plasma 

frequency is given by: 

𝜔𝑝
2 =

𝑛𝑒2

𝜀𝑠𝜀0𝑚∗
 

it depends on the free carrier density n, which is the 

doping level in this case, the electronic charge e, the 

permittivity of the free space 𝜀0, and the effective mass of the free carriers in the material 𝑚∗.   One of 

the scattering mechanisms that affects the mobility of the free carriers is the ion scattering, this 

phenomena makes the mobility of the free carriers function in the doping level, in turns the effective mass 

and the scattering rate are functions in the doping level (7). The effective mass is related directly to 

material parameters through (7): 

𝑚∗ = (
ℎ2

2ΔΕ𝑔n
) (

3n

8𝜋
)

2 3⁄

 

where h is plank's constant, n is the doping level, and ΔΕ𝑔 is the band gap narrowing. The band gap 

narrowing is related to the doping level through (8): 

ΔΕ𝑔 = Α ∙ n1 3⁄ + Β ∙ n1 4⁄ + C ∙ n1 2⁄  

where A, B and C are constants, for InAs they are determined to be 14 × 10−9, 1.97 × 10−7 and, 57.9 ×

10−12 respectively (8). 

Figure 4-1 the hybrid plasmonic waveguide, labeled 
with the materials used, symbols for dimensions and 
the axes direction and position. 
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The scattering rate is related to effective mass and mobility through: 

Γ =  
𝑒

𝜇𝑚∗
 

where the hall mobility is represented by the empirical model (9): 

𝜇(𝑁) =  𝜇𝑚𝑖𝑛 +
𝜇𝑚𝑎𝑥 (

300
𝑇 )

𝜃1

− 𝜇𝑚𝑖𝑛

1 + (
𝑁

𝑁𝑒𝑓𝑓 (
𝑇

300)
𝜃2

)

𝜆
 

where T is the temperature (300 K), and the other parameters are fitted to the experimental data in (7), 

the 𝜇𝑚𝑎𝑥,  𝜇𝑚𝑖𝑛, 𝜃1, 𝜃2, 𝑁𝑒𝑓𝑓and 𝜆 equals 35400, 80, 1.57, 3, 1.8E17, 0.86 respectively. The mobility is 

related to the hall mobility through the hall factor, which equals 1 for the InAs for doping levels higher 

than 1E19 cm-3 (10). The relative permittivity and refractive index of the InAs are shown in Figure 4-2. 

Lastly in this section, finite element method is used throughout this analysis, and 10 elements per feature 

are used as a minimum for meshing following the rule of thumb. 
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Figure 4-2  shows the real and imaginary parts of the refractive index (upper curve). shows the real and imaginary parts of the 
relative permittivity (lower curve). 

4.2 RESULTS & DISCUSSION  

In this section, the results of this study will be discussed. First, the modal shapes and dispersion curves 

are presented, and the effect of the waveguide dimensions and doping (n) are discussed then. As can be 

seen in Figure 4-3, the dispersion curve is divided into two main parts. At higher wavelengths, the modal 

shape is a normal hybrid plasmonic mode. While at lower wavelengths, negative dispersion appears, and 

more field moves inside the InAs. The field is partially confined in the InAs at the epsilon near zero (ENZ) 

of the doped InAs. 
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Figure 4-3 fig(3a) shows the surface plot and 1D plot of the modal shape at wavelength equals 3.3 um, fig(3b) at wavelength 
equals 8 um, and fig(3c) shows a dispersion curve, all are at doping = 2.5E20 cm-3, W = 2 um, H = 0.6 um, and h = 100 nm. The 1D 
plots are taken at the white dashed lines in the surface plot. 

 

Figure 4-4 shows how the mode transforms as the 

wavelength increase, note the AlAs is a 100 nm layer 

around zero in the graph. it can be observed that the 

confinement of the field decreases with the wavelength 

decrease. Also, the losses increase due to the increased 

number of free carriers in the doped InAs region. 

 

(a) 
GaAs 

Figure 4-4 Modal shapes taken at the dashed white line 
in the above surface plot. 
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Figure 4-5 shows the effect of the doping on the modal 

shape, it is observed from the graph that increasing the 

doping level causes an increase in the confinement of 

the mode from the side of the InAs (positive side of the 

graph),   and this  is intuitive to understand, as the 

higher free carriers absorbs the field faster, while the 

confinement decreases from the GaAs side, (the 

negative part of the graph). This is intuitive to 

understand. The higher free carrier concentration 

absorbs the field faster, while the confinement 

decreases from the GaAs side, (the negative part of the 

graph). 

 

Figure 4-6 shows the modal shapes at different dimensions. fig(6a) is at doping equals 2.5E20 cm-3 , 

wavelength equals 7 um, fig(6b) is at doping equals 5E19 cm-3 , wavelength equals 8 um, fig(6c) is at 

doping equals 7.5E19 cm-3 , wavelength equals 7 um, fig(6d) is at doping equals 1E20 cm-3 , wavelength 

equals 7 um.

Figure 4-5 The modal shapes of the plasmonic modes at different 
doping, all are at wavelength = 7.5 um  W = 2um, H = 0.3um. 
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Figure 4-6, shows the effect of the waveguide dimensions including H &W on the modal shapes, generally, 

it can be observed that these dimensions have little effect on the modal shapes. Figure 4-5(a & b) show 

the effect of varying the clad height, as the height increases from 0.3 um to 0.6um, the confinement of 

the field decreases from the GaAs side, so smaller amount of power is left on the InAs part, this makes 

the jump of the field due to the boundary conditions at the InAs-air interface smaller, in addition to the 

fact that this jump occurs after the field travels more in the InAs due to the larger height, so the 

confinement increases at the InAs side.  

 

Figure 4-6 (c&d) show the effect of the clad width on the  modal shapes. This parameter has even smaller 

effect, as the width increases from 1um to 2um, the confinement slightly decreases on the GaAs side and 

increases on the InAs side. 

 

Figure 4-7 The effective mode index (neff) and the extension coefficient (k) at various doping (2.5E20 cm-3, 1E20 cm-3, 7.5E19 cm-
3, 5E19 cm-3). The vertical dashed lines mark the position of the plasma wavelength, the green line, the red, and the cyan line are 
for 1E20 cm-3, 7.5E19 cm-3, 5E19 cm-3 doping respectively. The plasma wavelength of the 2.5E20 cm-3 is bellow 3 um. 



www.manaraa.com

 

 

47 

 

 

 

 

Moving to the dispersion curves. In Figure 4-7, the dispersion curves at various doping of the InAs are 

shown (5E19 cm-3, 7.5E19 cm-3, 1E20 cm-3 & 2.5E20 cm-3). As the doping increases, the dispersion curve is 

affected in several ways. First, the dispersion curve is shifted up. Second the plasma frequency and the 

peak of the dispersion curve are shifted towards lower wavelengths, leaving a wider bandwidth for the 

hybrid plasmonic mode. Third, the wavelength range where negative dispersion can be obtained is shifted 

down. Lastly, the slope of the negative dispersion part increases. Also increasing the doping level, 

decreases the losses of the hybrid plasmonic mode, as it becomes further from the plasma frequency.     

Figure 4-8 is a group of curves that shows the effect of the dimensions and doping on the dispersion curve, 

from which the different trends can be interpreted. The real part will be discussed first, by looking at 

Figure 4-8 (a) at the inset of the doping 2.5E20 cm-3, we can get several conclusions. First, increasing the 

width of the waveguide (W), causes an increase in the effective index of the positive dispersion region. 

On the other hand, it approximately has no effect on the negative dispersion.  
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Figure 4-8 shows dispersion curves at doping levels, and different widths and heights, for the waveguide, at constant core height, 
which is equal to 100 nm. 



www.manaraa.com

 

 

49 

 

 

Figure 4-9 shows dispersion curves at different core heights (h), at different doping levels, all the curves are at waveguide width 
equal to 2 um, and height equal to 0.6 um. 

Second, increasing the height of the cladding (H) has an opposite effect. a decrease in the effective index 

of the hybrid mode in the positive dispersion region occurs, and slightly increases the slope of the negative 

dispersion region. by looking at the dispersion curves at the other doping levels, the same observation 

can be made. In the group of graphs regarding the doping level 5E19 cm-3 Figure 4-8 (a), there is a 

dispersion curve at dimensions equal to 150 nm width (W) and 150 nm height (H). This dispersion curve 

is shifted upward a lot higher than the other curves, it is concluded that the dispersion curve is a stronger 

function in height. The same conclusion can be reached by looking at the other dimensions. 

For the imaginary part, as the area of the waveguide increases, the losses decreases, which means that 

the absolute value of the imaginary part decreases, and this is easy to understand, as the field confines in 

a smaller area, more field flows in the doped InAs, which causes higher loses. Now, let's move to Figure 

4-9, where the effect of the height will be investigated of the core. The conclusion is simple, as the height 

of the core (h) increases, the peak of the curve increases. Also, the slope of the negative dispersion part 

increases, and the absolute value of the slope in the positive part increases. All these effects are stronger 

at lower doping levels.          
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4.3 CONCLUSION: 

Using doped semiconductors enables us to control the plasma frequency to the mid infrared region, while 

keeping fabrication simple. The negative dispersion properties of this waveguide will enable it to enter a 

new category of applications. III-V media can help in building complete systems including source, detector 

and guiding using the same technology.    
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 : MID-INFRARED III-V ELECTRO-ABSORPTION HYBRID PLASMONIC 

MODULATOR 

Abstract: 

An electro-absorption modulator in midinfrared region, built on hybrid plasmonic waveguide concept, 

using III-V media is proposed in this work. 

5.1 INTRODUCTION 

Midinfrared range of wavelength is rich of possibilities, it has the electromagnetic footprint of many 

hazardous molecules and many biological elements which makes it ideal for sensing applications [1][2]. 

Also, it has a low loss windows in the midinfrared region, which makes it suitable for free space 

communication [2]. Expanding the telecommunication wavelength range to higher than 2 μm is one 

motivation for such research [3]. Also, longer wavelengths can be utilized in free-space communications 

modulator, signal processing and switching applications [4]. 

The light sources used in midinfrared region is Quantum cascade lasers, due to its high efficiency [5]. These 

laser sources, are built based on III-V semiconductor media. Consequently, building other optical 

components using the same technology, opens the door for complete integrated systems being built on 

the same technology, without the need to couple from or to silicon on insulator technology, including, 

light sources [5][11][12][13][14][15], modulators, sensors [6][7][8][9], and detectors [10]. Also, this 

platform enables working at higher wavelength range [11], and it opens the doors for design capabilities 

that is beyond the SOI platform, due to the III-V material’s superior electronic properties [11].  

One of the components that is needed for optical sensor photonic circuits, is optical modulators. For 

experimental characterization of midinfrared components, a combination of a chopper and lock in 

amplifier is often used to increase the signal to noise ratio, whose purpose is to shift the system to a higher 

frequency, where frequency dependent noise is smaller. An optical modulator could replace the chopper 

in an on-chip system [16].  

Few groups tried to work on midinfrared modulators by extending the Si or Ge based modulators to the 

midinfrared region [17][18]. SOI carrier injection modulators with speed up to 3 Gb/s at 2165 nm 
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wavelength [19], and GOI modulators at 1950 nm wavelength [20] have been demonstrated. An MZI-

based PN junction modulator in the SOI platform has been demonstrated at 1950 nm. The device operates 

at carrier depletion mode, a modulation efficiency of 2.02 V.cm at 1550 nm and 2.68 V.cm were measured. 

An open eye diagram at 20 Gb/s with a 5.8 dB extinction ratio were measured.  

As it is clear from this short summary of Si and Ge based midinfrared modulators, structures are still having 

a very big footprint, and high insertion losses which is not suitable for working in Lap-On-Chip applications. 

Few studies tried to exploit the capabilities of plasmonics in midinfrared optical modulators. Hybrid 

plasmonic waveguides have many advantages. They utilize the plasmonic feature of highly confining light 

in subwavelength dimensions from one side, allowing for higher ability to control light, while it is easier 

to couple light to and from it [21]. In this study, we present a plasmonic modulator that is based on the 

hybrid plasmonic waveguide presented in the previous chapter.   

This chapter goes on as follows, first the modulator principle is discussed in section 2. The design process 

is divided to three sections, in section 3, electrical behavior of the modulator is discussed. In section 4, 

modal analysis of the optical modes is discussed. From this stage a primary design dimensions and 

materials was determined. In section 4, complete electromagnetic simulations using finite dereference 

method is presented, and the modulator performance parameters are discussed. Section 5 is the 

conclusion. 
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5.2 MODULATOR PRINCIPLE 

The modulator is based on a hybrid plasmonic waveguide [21], that is built on a GaAs substrate, as shown 

in Figure 5-1 (a). The waveguide consists of three layers; The upper layer is a Doped InAs that is used as 

the plasmonic material. The doped InAs model is the same as the one used in the previous chapter. The 

core material and InAs doping levels are optimized for the highest possible extinction ratio, and the 

bottom material is GaAs. GaAs/AlGaAs platform is used to be the power feeding optical waveguides in the 

modulator and out of the it. The Al content in the AlGaAs layer is optimized for the highest possible 

coupling to the hybrid plasmonic waveguide.   

 

The modulator structure is shown in Figure 5-1(b). The optical fundamental TM mode propagates in the 

GaAs/AlGaAs optical waveguide. The optical power is partially coupled to the hybrid plasmonic 

waveguide, constituting a four-layer mode -InAs/AlAs/GaAs/AlGaAs- which is named the coupled mode. 

This mode’s power is shared between the hybrid plasmonic mode and the optical mode. It propagates 

through the modulator, where it experiences losses from the plasmonic part of the coupled mode. The 

remaining coupled mode’s power in the hybrid plasmonic waveguide couples back to the optical mode at 

the end of the modulator length. Some losses occur at the end of the modulator from field scattering due 

to the mismatch between the end of the plasmonic waveguide and the optical waveguide.  

The Hybrid plasmonic waveguide acts as a PIN diode from the electrical point of view, so that the carrier 

concentration in the InAs can experience changes as a response to electrical signals. Consequently, the 

Figure 5-1, to the left (a), the hybrid plasmonic waveguide built on a GaAs substrate is shown. To the right (b), the modulator 
schematic shows the mode coupling from the GaAs/AlGaAs optical waveguide to the hybrid plasmonic waveguide, and then 

back to the optical wave guide. 

(a) (b) 
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dispersion properties of the hybrid plasmonic mode is controlled, creating the ability to manipulate the 

flowing power. In the off state, the losses of the hybrid mode are tuned to be high, consequently most of 

the power gets lost. In the on state, at the end of the modulator length, the hybrid mode gets coupled 

back to the optical waveguide, while some of the power gets scattered. 

5.3 CHARGE SIMULATIONS 

In order to quantify the ability of the structure to accumulate charge or deplete charge, charge simulations 

are done using Device Lumerical simulator. The simulator solves Poisson’s equation and the drift-diffusion 

equations simultaneously. The electrical models for the materials are used from the program’s own 

library, the models contain the material’s energy bands parameters, mobility as a function doping models, 

effective mass data, and different recombination models. Meshing was chosen such that no part of the 

structure has less than 10 mesh elements, and meshing convergence test were carried out to ensure that 

the simulations are not mesh dependent. 

The structure used is shown in Figure 5-2, the structure resembles a PIN diode, where InAs is the n-region, 

AlAs is the intrinsic region and GaAs is a lightly doped region, where P-doping of 1E14 cm-3 is added to 

the whole GaAs waveguide. GaAs rib waveguide is used instead of strip waveguide, so as to be able to add 

Aluminum contacts as shown, to electrically connect GaAs to the electrical ground of the control 

electronic circuit. Another Aluminum contact is added on top of the doped InAs, to carry the control 

electrical signal. The rest of the structure is the same as discussed in the previous section. 
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Figure 5-2, the modulator design showing the GaAs substrate, the AlGaAs buffer layer, then the GaAs rip waveguide, then the 
Hybrid plasmonic AlAs and doped InAs layers, and the Aluminum contacts for electrical control. 

At first the possibility of depleting the carriers from the n-doped InAs layer is studied. Using the dispersion 

curves of the hybrid plasmonic waveguide discussed in the previous chapter (chapter 4), an initial doping 

of 1E20 cm-3, so as to create a plasmonic effect at wavelength equal to and higher than 5 μm. A positive 

voltage is applied to the top Aluminum contact to deplete the negative electrons in the InAs layer. No 

depletion is noted at all in the InAs layer, on the contrary the GaAs is nearly fully depleted, as shown in 

Figure 5-3. This occurs because the very high doping required for creating the plasmonic effect in the 

midinfrared region drives the InAs material into degeneracy due to its very small 0.36 eV band gab [26].  

 

Figure 5-3, the charge distribution at 0 V and 5 V are shown to the left and right respectively.  
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Next, charge accumulation is studied instead of charge depletion, where the InAs is doped with a doping 

less than the required for the plasmonic effect at midinfrared operation. The applied voltage accumulates 

charges enough to allow for the hybrid plasmonic mode propagation in midinfrared region. Figure 5-4 

shows the n and p curves to the side of the band diagram at 5 V. The charge is accumulated at the AlAs-

InAs interface, which makes the charge increases from 1E16 cm-3 to 7.7E18 cm-3.  

 

 

Figure 5-4, to the left is the charge distribution at -5V, showing the accumulation. To the right is the band diagram at the same 
voltage level. 

The capacitance of the structure is studied as shown in Figure 5-5. At low enough doping levels (e.g. 1E16 

cm-3 in this case), where the InAs is not degenerate, part of the depletion region of the PIN structure is in 

the InAs region. The capacitance of the structure is the highest at no voltage, as the voltage increases, and 

the intrinsic depletion region of the structure decreases, the capacitance of the structure decreases.  
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Figure 5-5, the AC capacitance of the modulator. 

Superlattice had to be employed instead of the plain doped InAs layer, as to create many accumulation 

layers, as the single accumulation layer is not seen by the optical field as a doped region, while the field 

deals with the superlattice region as one doped region.  

The superlattice is formed of ten InAs-AlAs layers, with InAs 10 nm high, and AlAs 5 nm high, as shown in 

Figure 5-6. The AlAs is chosen to be smaller than the InAs so as for the peaks of the charge to be nearly 

grouped. Based on the previous chapter, the base superlattice doping is chosen to be 4E19 cm-3, where 

we are sure that there is no plasmonic mode at wavelengths in the range from 3 μm to 8 μm, and then 

biasing voltage raises the charge to allow for the propagation of the plasmonic mode in target wavelength 

range. The charge distribution is shown in Figure 5-7. The charge level at any of the InAs layers in Figure 

5-7 is 6.7E19 cm-3 at 5 V.  
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Figure 5-6, the modulator design with the superlattice. 

  

Figure 5-7, the charge distribution in the modulator. To the left is at no voltage. To the right is at -5 V. 

As the applied voltage increases from 0 to 20 V, the charge increases from the base 4E19 cm-3 to 1.5E20 

cm-3, which is an appropriate charge level as will be seen later in the modal analysis section for the 

wavelength range from 4 μm to 8 μm (next section), Figure 5-8. It is worth mentioning that, lower doping 

should be used in case of working at higher wavelength range; consequently, higher voltage levels will be 

needed accumulate enough charge to work at lower wavelength ranges. Note that the voltage is 

normalized in this graph, while the actual applied voltage is negative. 
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Figure 5-8, The charge accumulation in any of the InAs layers in the superlattice vs the voltage. 

A 2D Finite Difference Time Domain (FDTD) simulation (FDTD simulations will be discussed in section 5.5 

in details) is shown in Figure 5-9, to show the modulator transmission with and without superlattice in the 

low power state, it is clear that without a superlattice, the modulator is transparent from 4 um to 10 um 

wavelength. While with superlattice structure, there is a significant decrease in transmission, which will 

be optimized and discussed later on. 

 

Figure 5-9, FDTD transmission of the modulator with and without a superlattice. 
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5.4 MODAL ANALYSIS:  

The modal analysis presented in this section is done on Mode Solutions Lumerical simulator. Meshing, 

boundary conditions were optimized to ensure simulator accurate results. Two groups of dispersion 

curves are calculated and discusses, modal analysis of the optical waveguide (shown in Figure 5-10, the 

GaAs/AlGaAs optical waveguide.), and hybrid plasmonic modes incorporating the superlattice discussed 

previously. 

 

Figure 5-10, the GaAs/AlGaAs optical waveguide. 

 

Figure 5-11, dispersion curve of the hybrid plasmonic waveguide (from previous chapter), also the 

symmetric and antisymmetric modes are shown. shows the dispersion curves of the Hybrid plasmonic 

waveguide from the previous chapter. The dispersion curves showed that there are two modes for the 

waveguide, one is symmetric and the other is symmetric. Since the choice were made in this study to 

work with the fundamental mode of the optical waveguide, then we only consider the symmetric hybrid 

plasmonic mode in this study, as it is the one that can be coupled to the optical mode. 
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Figure 5-11, dispersion curve of the hybrid plasmonic waveguide (from previous chapter), also the symmetric and antisymmetric 
modes are shown. 

First, effective media concept discussed in [27] is used to replace the superlattice with an equivalent 

material. The following equation is used [27]: 

𝜀𝑒𝑓𝑓 = 𝑓1𝜀𝑚 + 𝑓2𝜀𝑑 

Where 𝜀𝑚 is the permittivity of the conductor, which is InAs in our case, 𝜀𝑑 is the permittivity of dielectric, 

which is AlAs in our case.  𝑓1 and 𝑓2 are filling ratios, which is the height of any of the two layers (1 or 2 

respectively) over the sum of the two layers. The Drude model used in previous chapter for InAs is used 

for its permittivity, and AlAs refractive index is set to be 2.82. Computing this equation at various InAs 

doping level, we get the effective material permittivity as shown in Figure 5-12 (a & c), the plain doped 

InAs permittivity is shown to its side for reference, Figure 5-12 (b & d). 
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Figure 5-12, (a & c) shows the effective media permittivity real and imaginary parts respectively at different doping levels, and (b 
& d) shows the plain doped InAs permittivity real and imaginary parts respectively at different doping levels. 

As can be seen from Figure 5-12, (a & c) shows the effective media permittivity real and imaginary parts 

respectively at different doping levels, and (b & d) shows the plain doped InAs permittivity real and 

imaginary parts respectively, the effective media permittivity has zero crossings at higher wavelength 

values, as compared to plain doped InAs, which means higher plasma frequency at the same charge 

concentration level. Also, the imaginary part is lower, which reflects the fact the effective material has an 

overall lower conductivity due to the presence of the dielectric.  

Second, based on the new effective media permittivity, new dispersion curves for the hybrid plasmonic 

waveguide is computed, Figure 5-13, dispersion curves of the hybrid plasmonic modes, at four different 

doping levels, real (upper plot) and imaginary (Lower plot) parts. Also,. Dispersion curves for the optical 

waveguide (Figure 5-10) is also computed, with AlAs model refractive index is set to 2.82, GaAs-Palik 

model used from the library of Lumerical simulator, and according to [25], the refractive index of Al0.9GaAs 

is 2.85. 
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Figure 5-13, dispersion curves of the hybrid plasmonic modes, at four different doping levels, real (upper 

plot) and imaginary (Lower plot) parts. Also, dispersion curves of the optical modes are presented.  

Figure 5-13 shows two sets of curves, first the hybrid plasmonic dispersion curves are computed versus 

two main parameters, the core height, and the InAs charge concentration. It was found that the height 
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has little effect on the hybrid plasmonic dispersion behavior. Second, the optical modes dispersion curves 

are computed at two different heights. 

The modulator concept is based on absorption of the optical power coupled from the optical waveguide 

to the hybrid plasmonic waveguide. Consequently, for optimum modulator performance, both coupling 

and hybrid plasmonic modulator losses should be optimized. In other words, best momentum matching 

leads to best coupling, but due to low relative hybrid plasmonic mode losses at the point of best 

momentum matching, overall modulator absorption is not necessarily the best. Hence, both momentum 

matching and hybrid plasmonic mode losses are optimized to give us the optimum overall modulator 

response. 

5.5 FDTD SIMULATIONS 

The device is electromagnetically completely modeled using Lumerical Finite Difference Time Domain 

(FDTD). All FDTD simulations is done on Lumerical FDTD, no part of the structure has less than twenty 

mesh elements, and usually most of the structure has much more than this limit. Meshing convergence 

test was also done to ensure that meshing is not a parameter that affects the results. All the boundary 

conditions were chosen to be phase matched layer, and they were optimized to ensure no reflections 

from the boundaries. The same previously mentioned Material parameters (in the Mode Analysis section) 

are used. 

 Figure 5-14 shows the wide band transmission response of the modulator for a 40 um modulator. The 

modulator response is divided into two parts. First, the normal operation is the wavelength range where 

normal coupling from the optical waveguide to the plasmonic waveguide occurs, and then the field dies 

in the plasmonic mode. The minimum of the curve differs with the voltage (charge concentration), as at 

lower voltage levels, higher wavelength ranges is absorbed in the plasmonic waveguide, and vice versa. 

Second, the resonance operation, this part shows the significant results. It was found that, due to the 

presence of the superlattice, the plasmonic mode gets absorbed inside the superlattice at specific 

wavelengths, as shown in Figure 5-15, yielding very high extinction ratios. 
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Figure 5-14, wide band transmission of the modulator. The modulator response is divided into two parts, the first part is called 
the resonance regime, the second part is called the normal regime. 

 

 

Figure 5-15, Modal shape at resonance, at wavelength equal to 4.85 um in the Off state (to the left), and On State (to the right). 

Figure 5-16 Shows the On and Off operations at wavelength equal to 4.85 um. The transmission at this 

wavelength is shown in Figure 5-17, where the extinction ratio is 27 dB, and the insertion loss is 1.2 dB. 

The same response can be shown at wavelengths 6.6 um in Figure 5-18, where the extinction ratio is 

equal to 16.7 dB, and the insertion loss is 1.55 dB.  
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Figure 5-16, The upper figure shows the modulator off state, while the lower figure shows the modulator 

on state. 
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Figure 5-17, transmission at wavelength equal to 4.85 at 2.5V. 

 

 

Figure 5-18, transmission at wavelength equal to 6.6 at 7.5V. 
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5.6 CONCLUSION 

An electro-absorption modulator based on a hybrid plasmonic waveguide formed of doped 

InAs/AlAs/GaAs fed from GaAs/AlGaAs platform optical waveguide. The device is modeled and optimized, 

for on-chip optical sensor circuits in the mid-infrared region. The modulation happens by accumulating 

carriers electrically, and hence controlling the field coupling between the optical mode and the hybrid 

plasmonic lossy waveguide. The device showed an extinction ratio of 27 dB at 40 μm length, and 1.2 dB 

of insertion loss. The small device footprint predicts a low energy consumption. 
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 : CONCLUSION 

On chip optical interconnects are becoming a must for the continuing increasing need for higher data 

rates, and higher processing capabilities. Also, on-chip optical sensing can extensively help health care 

systems in fast and reliable diagnosis. For these two purposes, nanoscale optical modulators with high 

modulation depth, and low power consumption is of high need. More exploration for the interdisciplinary 

physics of the light matter interaction is of needed to reach this goal. 
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In this thesis, we designed two optical modulators. The first targets the optical interconnects application 

in the infrared region at 1.55μm, and it is based on silicon on insulator technology. The second targets on 

chip optical sensor photonic circuits in the mid-infrared region, and it is based on III-V semiconductors 

technology. For the purpose of building the mid-infrared modulator, a complete hybrid plasmonic 

waveguide was built and analyzed. 

First, an organic plasmonic electro-refractive modulator based on Mach-Zehnder interferometer was 

designed. The orthogonal junction coupling technique between optical waveguides, and the highly 

confining metal insulator metal plasmonic waveguides is utilized to couple wideband power streams 

instantly without the need for length tapper structures. The device is optimized to work at the optical 

communication wavelength 1.55μm wavelength. For a footprint of 0.6μm × 4.7μm, extinction ratio of 

15.8 dB and insertion loss of 3.38 dB at 10 volts was achieved in the 3D simulations. The product of voltage 

and length of the modulator is 47 Vμm. Orthogonal junction coupling scheme enhances the modulator 

footprint, and consequently lowers plasmonic losses in the on state of the modulator, meaning lower 

insertion loss. It also allowed for high field interaction at the modulator’s output port, meaning a higher 

value of extinction ratio, while keeping the voltage length product approximately the same. 

Next, doped semiconductors were used as an alternative to metals, the doping enables us to control the 

plasma frequency of the semiconductor to the wavelength of interest, in our case the mid infrared region. 

Using this feature, a hybrid plasmonic waveguide was designed and analyzed. III-V semiconductor media 

are used, to take advantage of the fact that, quantum cascade laser sources, the most efficient and 

promising laser sources in this wavelength range is built using the III-V technology. Dispersion curves were 

calculated for the waveguide vs doping, and dimensions, showing how to utilize this waveguide for a 

particular application. Positive, negative dispersions, and a point of zero phase velocity were found, and 

we were able to control the dispersion curve features through doping. The negative dispersion properties 

of this waveguide will enable it to enter a new category of applications. From the fabrication point of view, 

this device is simple as it consists of three thin films over a GaAs substrate. 

Finally, an electro-absorption modulator in the midinfrared region, targeting the on chip optical sensor 

circuits is was designed. The modulator is based on the hybrid plasmonic waveguide formed of doped 

InAs/AlAS/GaAS that is presented in chapter 4. The modulator is fed from GaAs/AlGaAs platform optical 
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waveguides, which is compatible with quantum cascade lasers, the light sources mainly used in this 

wavelength region. Modulation occurs by electrically depleting the carriers from the InAs, consequently 

controlling the field coupling from the optical mode to the hybrid plasmonic waveguide. The device 

showed an extinction ratio of 15 dB at 40 μm length, and 2 dB of insertion loss. The small device footprint 

predicts a much lower energy consumption. 

The connecting theme between the three pieces of work presented above, is to further understand light 

matter interaction to build smaller and more efficient optical modulators. 
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